Sensitive Data Detection
MCPProxy includes automatic sensitive data detection to identify potential credential leakage, secrets exposure, and other security risks in AI agent tool calls. This feature helps protect against Tool Poisoning Attacks (TPA) and provides compliance auditing capabilities.
Overview
When AI agents interact with MCP tools, they may inadvertently expose sensitive information such as:
- Credentials passed in tool arguments or returned in responses
- API tokens leaked through error messages or debug output
- Private keys embedded in configuration data
- Database connection strings with embedded passwords
MCPProxy scans all tool call arguments and responses for sensitive data patterns, logging detections in the activity log for security review and compliance auditing.
Supported Detection Types
Cloud Credentials
| Provider | Pattern | Severity |
|---|---|---|
| AWS Access Key ID | AKIA[0-9A-Z]{16} | critical |
| AWS Secret Access Key | 40-character base64 strings | critical |
| GCP API Key | AIza[0-9A-Za-z-_]{35} | critical |
| GCP Service Account | JSON with type: service_account | critical |
| Azure Storage Key | Base64 storage account keys | critical |
| Azure Connection String | DefaultEndpointsProtocol=... | critical |
Private Keys
| Key Type | Detection Method | Severity |
|---|---|---|
| RSA Private Key | -----BEGIN RSA PRIVATE KEY----- | critical |
| EC Private Key | -----BEGIN EC PRIVATE KEY----- | critical |
| DSA Private Key | -----BEGIN DSA PRIVATE KEY----- | critical |
| OpenSSH Private Key | -----BEGIN OPENSSH PRIVATE KEY----- | critical |
| PGP Private Key | -----BEGIN PGP PRIVATE KEY BLOCK----- | critical |
| PKCS8 Private Key | -----BEGIN PRIVATE KEY----- | critical |
| Encrypted Private Key | -----BEGIN ENCRYPTED PRIVATE KEY----- | high |
API Tokens
| Service | Pattern | Severity |
|---|---|---|
| GitHub Token | ghp_, gho_, ghu_, ghs_, ghr_ prefixes | critical |
| GitHub Fine-grained Token | github_pat_ prefix | critical |
| GitLab Token | glpat- prefix | critical |
| Stripe API Key | sk_live_, sk_test_, rk_live_, rk_test_ | critical |
| Slack Token | xoxb-, xoxp-, xoxa-, xoxr- | critical |
| Slack Webhook | hooks.slack.com/services/ URLs | high |
| SendGrid API Key | SG. prefix with base64 | critical |
LLM/AI Provider API Keys
| Provider | Pattern | Severity |
|---|---|---|
| OpenAI | sk-, sk-proj-, sk-svcacct-, sk-admin- prefixes | critical |
| Anthropic | sk-ant-api03-, sk-ant-admin01- prefixes | critical |
| Google AI/Gemini | AIzaSy prefix (39 chars) | critical |
| xAI/Grok | xai- prefix (48+ chars) | critical |
| Groq | gsk_ prefix (52 chars) | critical |
| Hugging Face | hf_ prefix (37 chars) | critical |
| Hugging Face Org | api_org_ prefix | critical |
| Replicate | r8_ prefix (40 chars) | critical |
| Perplexity | pplx- prefix (53 chars) | critical |
| Fireworks AI | fw_ prefix (20+ chars) | critical |
| Anyscale | esecret_ prefix | critical |
| Mistral AI | Keyword context required | high |
| Cohere | Keyword context required | high |
| DeepSeek | sk- with keyword context | high |
| Together AI | Keyword context required | high |
Database Credentials
| Database | Pattern | Severity |
|---|---|---|
| MySQL | mysql://user:pass@host | critical |
| PostgreSQL | postgres://user:pass@host | critical |
| MongoDB | mongodb://user:pass@host or mongodb+srv:// | critical |
| Redis | redis://user:pass@host or rediss:// | high |
| Generic JDBC | jdbc: URLs with credentials | high |
Credit Cards
Credit card numbers are detected using pattern matching combined with Luhn algorithm validation:
| Card Type | Pattern | Severity |
|---|---|---|
| Visa | 4xxx-xxxx-xxxx-xxxx | high |
| Mastercard | 5[1-5]xx-xxxx-xxxx-xxxx | high |
| American Express | 3[47]xx-xxxxxx-xxxxx | high |
| Discover | 6011-xxxx-xxxx-xxxx | high |
Credit card detection includes Luhn checksum validation to reduce false positives from random 16-digit numbers.
High-Entropy Strings
Strings with high Shannon entropy that may indicate secrets:
| Type | Characteristics | Severity |
|---|---|---|
| Base64 Secrets | High entropy, 20+ chars, base64 charset | medium |
| Hex Secrets | High entropy, 32+ chars, hex charset | medium |
| Random Tokens | High entropy, mixed alphanumeric | low |
Sensitive File Paths
Detection of file paths that typically contain sensitive data:
| Category | Examples | Severity |
|---|---|---|
| SSH Keys | ~/.ssh/id_rsa, ~/.ssh/id_ed25519 | high |
| Cloud Credentials | ~/.aws/credentials, ~/.config/gcloud/ | high |
| Environment Files | .env, .env.local, .env.production | medium |
| Key Files | *.pem, *.key, *.p12, *.pfx | high |
| Kubernetes Secrets | kubeconfig, ~/.kube/config | high |
Detection Categories and Severities
Categories
| Category | Description |
|---|---|
cloud_credentials | AWS, GCP, Azure credentials |
private_key | RSA, EC, DSA, OpenSSH, PGP private keys |
api_token | GitHub, GitLab, Stripe, Slack, OpenAI tokens |
auth_token | JWT, Bearer tokens, session tokens |
sensitive_file | Paths to credential files |
database_credential | Database connection strings with passwords |
high_entropy | Suspicious high-entropy strings |
credit_card | Credit card numbers (Luhn validated) |
Severities
| Severity | Description | Action |
|---|---|---|
critical | Direct credential exposure, immediate risk | Investigate immediately |
high | Sensitive data that could enable access | Review within 24 hours |
medium | Potentially sensitive, context-dependent | Review during audit |
low | Informational, may be false positive | Monitor trends |
Activity Log Integration
When sensitive data is detected, it is recorded in the activity log metadata:
{
"id": "01JFXYZ123ABC",
"type": "tool_call",
"server_name": "filesystem-server",
"tool_name": "read_file",
"status": "success",
"timestamp": "2025-01-15T10:30:00Z",
"metadata": {
"sensitive_data_detected": true,
"sensitive_data": [
{
"type": "aws_access_key",
"category": "cloud_credentials",
"severity": "critical",
"location": "response",
"context": "AKIA...XXXX (redacted)"
},
{
"type": "private_key",
"category": "private_key",
"severity": "critical",
"location": "response",
"context": "RSA PRIVATE KEY detected"
}
]
}
}
Detected sensitive values are automatically redacted in the activity log to prevent secondary exposure. Only the type, category, and partial context are stored.
Web UI Usage
The Activity Log page in the web UI provides filtering and visualization for sensitive data detections.
Filtering by Sensitive Data
- Navigate to Activity Log in the sidebar
- Use the Sensitive Data filter dropdown to show only activities with detections
- Filter by severity level (critical, high, medium, low)
- Click on an activity row to view detection details
Detection Indicators
Activities with sensitive data detections are marked with visual indicators:
- Red shield icon for critical severity
- Orange warning icon for high severity
- Yellow info icon for medium severity
- Gray info icon for low severity
Detail View
Clicking on an activity with detections shows:
- List of all detected sensitive data types
- Location (arguments or response)
- Redacted context for verification
- Timestamp and duration
CLI Usage
List Activities with Sensitive Data
# Show all activities with sensitive data detections
mcpproxy activity list --sensitive-data
# Filter by severity
mcpproxy activity list --sensitive-data --severity critical
# Combine with other filters
mcpproxy activity list --sensitive-data --server github-server --status success
View Detection Details
# Show full details including sensitive data metadata
mcpproxy activity show 01JFXYZ123ABC
# JSON output for scripting
mcpproxy activity show 01JFXYZ123ABC --output json
Export for Compliance
# Export activities with sensitive data for security review
mcpproxy activity export --sensitive-data --output security-audit.jsonl
# Export critical severity only
mcpproxy activity export --sensitive-data --severity critical --output critical-findings.jsonl
Summary Statistics
# Show sensitive data detection summary
mcpproxy activity summary --period 24h
# Output includes detection counts by category and severity
Configuration
Sensitive data detection is enabled by default. Configure via mcp_config.json:
{
"sensitive_data_detection": {
"enabled": true,
"scan_arguments": true,
"scan_responses": true,
"severity_threshold": "low",
"categories": {
"cloud_credentials": true,
"private_key": true,
"api_token": true,
"auth_token": true,
"sensitive_file": true,
"database_credential": true,
"high_entropy": true,
"credit_card": true
}
}
}
| Setting | Default | Description |
|---|---|---|
enabled | true | Enable/disable sensitive data detection |
scan_arguments | true | Scan tool call arguments |
scan_responses | true | Scan tool call responses |
severity_threshold | "low" | Minimum severity to log (low, medium, high, critical) |
categories.* | true | Enable/disable specific detection categories |
See Configuration for complete reference.
Cross-Platform Support
Sensitive file path detection adapts to the operating system:
| Platform | Path Patterns |
|---|---|
| macOS | ~/Library/, ~/.ssh/, ~/.aws/, ~/.config/ |
| Linux | ~/.ssh/, ~/.aws/, ~/.config/, /etc/ssl/private/ |
| Windows | %USERPROFILE%\.ssh\, %USERPROFILE%\.aws\, %APPDATA%\ |
Path detection normalizes separators and expands home directory references for consistent cross-platform detection.
Security Best Practices
Compliance Auditing
Use sensitive data detection for regular security audits:
# Weekly security audit export
mcpproxy activity export \
--sensitive-data \
--start-time "$(date -v-7d +%Y-%m-%dT00:00:00Z)" \
--output weekly-security-audit.jsonl
# Generate summary report
mcpproxy activity summary --period 7d --output json > weekly-summary.json
Real-time Monitoring
Monitor for critical detections in real-time:
# Watch for sensitive data detections
mcpproxy activity watch --sensitive-data --severity critical
Integration with SIEM
Export activity logs for integration with Security Information and Event Management (SIEM) systems:
# Continuous export for SIEM ingestion
mcpproxy activity export --format json --output - | \
your-siem-forwarder --input -
Incident Response
When a critical detection is identified:
- Review the activity:
mcpproxy activity show <id> - Identify the source: Check server name and tool name
- Assess impact: Determine if credentials were exposed externally
- Rotate credentials: If exposed, rotate the affected credentials immediately
- Investigate root cause: Review how sensitive data entered the tool call
Prevention Recommendations
- Use Docker isolation for untrusted servers with
network_mode: "none" - Enable quarantine for new servers added by AI agents
- Review tool descriptions for potential data exfiltration patterns
- Set up alerts for critical severity detections
- Regular audits of activity logs for security compliance
Related Features
- Activity Log - Core activity logging functionality
- Security Quarantine - Protection against Tool Poisoning Attacks
- Docker Isolation - Container-based server isolation
- Intent Declaration - Track operation types and data sensitivity